Adaptive modeling for large-scale advertisers optimization
نویسندگان
چکیده
منابع مشابه
Adaptive modeling for large-scale advertisers optimization
Background: Advertisers optimization is one of the most fundamental tasks in paid search, which is a multi-billion industry as a major part of the growing online advertising market. As paid search is a three-player game (advertisers, search users and publishers), how to optimize large-scale advertisers to achieve their expected performance becomes a new challenge, for which adaptive models have...
متن کاملA limited memory adaptive trust-region approach for large-scale unconstrained optimization
This study concerns with a trust-region-based method for solving unconstrained optimization problems. The approach takes the advantages of the compact limited memory BFGS updating formula together with an appropriate adaptive radius strategy. In our approach, the adaptive technique leads us to decrease the number of subproblems solving, while utilizing the structure of limited memory quasi-Newt...
متن کاملa limited memory adaptive trust-region approach for large-scale unconstrained optimization
this study concerns with a trust-region-based method for solving unconstrained optimization problems. the approach takes the advantages of the compact limited memory bfgs updating formula together with an appropriate adaptive radius strategy. in our approach, the adaptive technique leads us to decrease the number of subproblems solving, while utilizing the structure of limited memory quasi-newt...
متن کاملAdaptive Augmented Lagrangian Methods for Large-Scale Equality Constrained Optimization
We propose an augmented Lagrangian algorithm for solving large-scale equality constrained optimization problems. The novel feature of the algorithm is an adaptive update for the penalty parameter motivated by recently proposed techniques for exact penalty methods. This adaptive updating scheme greatly improves the overall performance of the algorithm without sacrificing the strengths of the cor...
متن کاملAn adaptive augmented Lagrangian method for large-scale constrained optimization
We propose an augmented Lagrangian algorithm for solving large-scale constrained optimization problems. The novel feature of the algorithm is an adaptive update for the penalty parameter motivated by recently proposed techniques for exact penalty methods. This adaptive updating scheme greatly improves the overall performance of the algorithm without sacrificing the strengths of the core augment...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Big Data Analytics
سال: 2017
ISSN: 2058-6345
DOI: 10.1186/s41044-017-0024-6